Comparative Analysis of Inverse Halftoning Techniques

Hana Darling-Wolf, Jeffrey Qiu **University of Toronto**

Motivation

- Halftoning (or dithering): image compression technique which reproduces tone with a limited colour palette (e.g. black and white) using distribution of halftone dots.
- Inverse halftoning: retrieval of continuous-tone images from halftoned images.
- Applications:
 - · recovery and preservation of printed media [3]
 - image editing [3]
 - · use of dithered images for lower bandwidth websites [1]
- Problem: inverse processes can be energy intensive.
- Goal: evaluate techniques for inverse halftoning based on a standard of quality that considers both reconstructed image quality and computational efficiency.

Related Work

Many methods for inverse halftoning [3, 4, 6]:

- Low-pass filter: simplest, but causes edge information to be lost [3].
- Look-up-table (LUT): improved both reconstruction accuracy and efficiency in comparison to previous implementations [3].
- Neural networks and deep learning: Xia et al. [6] achieved state-of-the-art performance using progressive residual learning.
- Edge-preserving denoising techniques (e.g. bilateral).

References

- [1] De Decker, K., & Grosjean, V. (2007). Low-Tech Magazine. LOW— TECH MAGAZINE https://solar lowtechmagazine.com/about.html.
- [2] Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416-423 (2001).
- [3] Mese, M., & Vaidyanathan, P. P. (2001). Look-up table (LUT) method for inverse halftoning. IEEE Transactions on Image Processing, 10(10), 1566-
- [4] Mese, M., & Vaidyanathan, P. P. (2002). Recent advances in digital halftoning and inverse halftoning methods. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(6), 790-805.
- [5] Ulichney, R. A. (1988). Dithering with blue noise. Proceedings of the IEEE, 76(1), 56-79.
- [6] Xia, M., Hu, W., Liu, X., & Wong, T. T. (2021). Deep halftoning with reversible binary pattern. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 14000-

Methods

- We used Floyd-Steinberg dithering to generate image sets with (i) 2 tone, (ii) 4 tone, and (iii) 16 tone colour palettes [5, 6].
 - 200 training images, 100 test images from BSDS300 dataset [2].
- Implemented 6 inverse halftoning techniques:
 - (1) a low-pass filter*
 - (2) bilateral filter*
 - (3) Alternating Direction Method of Multipliers (ADMM) with Total Variation
 - (4) ADMM with a denoising convolutional neural network (DnCNN)*
 - (5) Mese and Vaidyanathan's LUT [3]
 - (6) Xia et al.'s deep learning technique [6].
- Evaluated techniques based on average peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM), and runtime per image.
- For techniques 1, 2, 3, 4, we conducted a hyperparameter search, and used the parameters which gave the highest average

Experimental Results

Reconstructed Image Quality vs. Runtime 28 10.0

Reconstructed Image Quality vs. Dithered Image Compression Level

- Tradeoff between image quality and runtime
 - For 2 tone images, deep inverse, LUT, and low pass have best image qualityto-runtime ratio
 - Deep inverse and LUT give highest quality results, low pass is fastest
- For higher tone images (less compressed), low pass and general denoising approaches become more interesting
 - Do not require re-training for different compression levels
 - LUT would not perform as well on higher tone images
- These plots can guide algorithm choice depending on desired image quality, number of images to be converted
 - · Training time for deep inverse and LUT should also be taken into consideration